
0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2428692, IEEE Transactions on Computers

IEEE TRANSACTIONS, SEPTEMBER 2014 1

MARS: Mobile Application Relaunching
Speed-up through Flash-Aware Page Swapping

Weichao Guo, Kang Chen, Huan Feng, Yongwei Wu, Member, IEEE, Rui Zhang,
and Weimin Zheng, Member, IEEE

Abstract—The approach for fast application relaunching on the current Android system is to cache background applications in
memory. This mechanism is limited by the available memory size. In addition, the application state may not be easily recovered. We
propose a prototype system, MARS, to enable page swapping and cache more applications. MARS can speed up the application
relaunching and restore the application state. As a new page swapping design for optimizing application relaunching, MARS isolates
Android runtime Garbage Collection (GC) from page swapping for compatibility and employs several flash-aware techniques for
swap-in speedup. Two main components of MARS are page slot allocation and read/write control. Page slot allocation reorganizes
page slots in swap area to produce sequential reads and improve the performance of swap-in. Read/Write control addresses the
read/write interference issue by reducing concurrent and extra internal writes. Compared to the conventional Linux page swapping,
these two components can scale up the read bandwidth up to about 3.8 times. Application tests on a Google Nexus 4 phone show that
MARS reduces the launching time of applications by 50% ∼ 80%. The modified page swapping mechanism can outperform the
conventional Linux page swapping up to 4 times.

Index Terms—Mobile system, application launching, page swapping, flash storage

F

1 INTRODUCTION

SMARTPHONES and the applications running on top of
them have played an important role in our daily life.

Nowadays people are spending more time on smartphones
than ever. Undoubtedly responsiveness is a crucial factor for
user experiences with mobile applications.

As more and more applications are available on smart-
phones and users tend to interact with multiple applica-
tions, the launching time of applications should not be
neglected. It is quite obvious that the launching proce-
dures may include I/O or networking requests, graphics
rendering, location sensor, as well as some calculation for
initialization. Each of them needs time to be completed.
According to a two-month trace from 12 Android users,
most mobile application interactions only last about tens
of seconds to several minutes. Negative impact on user
experience will be inevitable if the launching costs more
than the interactive time, e.g., over tens of seconds.

Some previous work attempts to reduce the launching
time perceived by users. For example, in [1] authors used
prediction and pre-launching to reduce the response time
during the start of an application. However, pre-launching
cannot reduce the intrinsic time cost by the initialization

• Weichao Guo, Kang Chen, Huan Feng, Yongwei Wu, Weimin Zheng
are with the Department of Computer Science and Technology, Tsinghua
National Laboratory for Information Science and Technology (TNLIST)
Tsinghua University, Beijing 100084, China, Research Institute of Ts-
inghua University in Shenzhen, Shenzhen 518057, China, and Technol-
ogy Innovation Center at Yinzhou, Yangtze Delta Region Institute of
Tsinghua University, Ningbo 315000, Zhejiang. E-mail: {gwc11@mails.,
chenkang@, feng-h11@mails., wuyw@, zwm-dcs@}tsinghua.edu.cn.

• Rui Zhang is with the Department of Computing and Infor-
mation Systems, The University of Melbourne, Australia. E-mail:
rui.zhang@unimelb.edu.au.

• Corresponding author: Yongwei Wu (E-mail:wuyw@tsinghua.edu.cn)

work during launching, but the perceived time instead.
And if the prediction fails, the launching remains sluggish
and system resources are wasted as well. The prediction
precision must be high or the benefit of pre-launching could
be dropped down.

We are also seeking ways to reduce the perceived time
for application launching by improving the performance
of application relaunching. We learn from observation that,
users usually run the same application multiple times and
use several applications simultaneously. For example, users
might be obsessed with Facebook and launch it multiple
times for daily use. It is quite possible that users might click
the URL shared by their friends. This will usually launch
a web browser. And the user will quickly return to the
facebook application. In such scenarios, some applications
are relaunched again and again. It provides a new opportu-
nity to improve the launching time during the relaunching
procedure.

Based on the observation, caching applications in mem-
ory is an obvious approach. This is in fact how the system
works in current mobile platforms. For example, Android
can cache background applications in memory and simply
kill them for reclaiming memory in the case of low memory.
This is because Android manages the life cycle of every ap-
plication and provides APIs to save the application specific
state. Thus, the state information can be used to restore the
application after relaunching. Caching applications makes
the relaunching instantly. Restorable state makes the low
memory killer harmless.

However, there are still two issues of application
caching: the memory size and recoverability of complex ap-
plications. As for the limited size of memory on mobile de-
vices, only moderate numbers of applications can be cached.
Applications still need to be killed for reclaiming memory. It

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2428692, IEEE Transactions on Computers

IEEE TRANSACTIONS, SEPTEMBER 2014 2

requires a long time to relaunch an application and restore
it to the previous same state, which will surely do harm
to user experience. In addition, the assumption of restoring
to the previous same state cannot be easily achieved when
the applications become much more complex. For example,
the APIs provided by Android to store the application state
require input as a bundle object (a mapping from string
values to parcelable objects). It is hard to efficiently export
the running state information of game applications into a
bundle object. Thus, we argue that the mobile applications
should not be simply killed.

Page swapping can mitigate the above two issues. It
provides more memory space for caching applications and
the full state of them. Applications now do not need to
relaunch from scratch. Instead a load is needed to rebuild
the memory image of corresponding application. As the
bootstrap code does not need to be executed again, the
relaunching could be fast.

It is possible to enable page swapping on Android for
fast application relaunching. Unfortunately, Android has
disabled page swapping in Linux kernel for the consid-
erations of flash storage and battery life. The most criti-
cal reason is the incompatibility between page swapping
and Android runtime garbage collection (runtime GC) 1.
Another challenge is the speed of page swapping. Most
current smartphones are equipped with eMMC 2 for energy
efficiency and high-density storage capacity. However, the
efficiency of reloading data from swap area in this type
of storage is usually slow. Thus, speed up page swapping
is significant to improve the performance of application
relaunching.

To address these two issues, this paper proposes MARS,
a prototype system implementing the application relaunch-
ing oriented redesign of Linux page swapping on Android.
MARS has embraced several new designs to build a flash-
aware page swapping mechanism for application relaunch-
ing speedup.
1) MARS has built a runtime GC compatible page swap-

ping mechanism by retrofitting Android runtime and the
Linux page swapping.

2) MARS has redesigned the data organization in swap area
and carefully controlled the read and write operations
involved in swapping to avoid the performance problem.

3) We have tested our prototype system. Compared to the
conventional Linux page swapping, the two components,
page slot allocation and read/write control in MARS can
scale up the read bandwidth to about 3.8 times. Applica-
tion tests on a Google Nexus 4 phone show that MARS
reduces the launching time of applications by about 50%
to 80%. The modified page swapping mechanism can
outperform the conventional Linux page swapping up
to 4 times.
The remainder of the paper is structured as follows.

Section 2 describes the motivations we built MARS and
the technical challenges encountered. Section 3 presents the
design and implementation of MARS. We evaluate MARS

1. We denote this as runtime GC to make it different from the flash
GC (flash block garbage collection performed by the flash translation
layer in the flash storage for reclaiming dirty blocks).

2. Embedded Multi Media Card, a form of NAND flash used for main
storage on the vast majority of mobile devices.

 0

 0.2

 0.4

 0.6

 0.8

 1

0

5

1
0

1
5

2
0

C
u
m
u
l
a
t
i
v
e

P
r
o
b
a
b
i
l
i
t
y

Duration (Minutes)

Fig. 1. Application usage for 12 Android users over 2 months
We have developed an Android application, called “Astat”, to trace
the application interleaving on Android phones. The application
usage traces are collected by Astat installed on the smartphones
with the permission of the volunteers. There are 25948 application
interactions in the traces. The number of the durations less than
10 seconds is 10345. There are 16946 application interactions that
last less than 1 minute. Many mobile applications last only a few
seconds but used very frequently, such as messaging, weather
report, and utility applications. For example, the application
Wechat has 1624 interactions that are less than 10 seconds in
the traces.

in Section 4 followed by related work in Section 5 and
conclusion in Section 6.

2 MOTIVATION AND TECHNICAL CHALLENGES

Applications running on top of smartphones have different
characteristics from those running on desktop or servers.
Moreover, application relaunching is far more frequent on
smartphones than on other platforms. In this paper, MARS
is proposed to improve the user experience by enhancing
the performance of application launching. In this section, we
illustrate our motivations of building MARS by answering
the following questions:

• Is slow application launching a serious problem?
• What are the limitations of state-of-the-art solutions?
• Why building MARS instead of using (enabling) the

original Linux page swapping?

2.1 Application Launching Analysis
Unlike long running tasks on server platforms, it is quite
common to observe plenty of short and frequent interactions
of mobile applications. In fact, user experience is more
important than performance for mobile applications. A user
experience research [2] reveals that 10 seconds is the maxi-
mum waiting time before distraction happens. Even for up-
to-date smartphones, the launching time of some popular
applications reaches up to tens of seconds.

We collect a two-month trace from 12 Android users. An
application usage tracer was installed on volunteers’ An-
droid phones (with their permissions) from June to August

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2428692, IEEE Transactions on Computers

IEEE TRANSACTIONS, SEPTEMBER 2014 3

0

5

10

15

20

25

T
E
T
R
IS

B
li
tz

C
la
sh

o
f
C
la
n
s

F
ru
it
N
in
ja

P
v
Z
2

A
n
g
ry

B
ir
d
s

T
e
m
p
le
R
u
n
2

A
ce
s

Li
n
k
e
d
In

F
a
ce
b
o
o
k

G
o
o
g
le
+

T
w
iM
e
r

P
in
te
re
st

In
st
a
g
ra
m

S
k
y
p
e

M
e
ss
a
g
e
r

H
a
n
g
o
u
ts

S
n
a
p
ch
a
t

H
o
te
l
T
o
n
ig
h
t

G
m
a
il

La
u
n
ch
in
g
T
im

e
(s
)

Fig. 2. Launching time of some popular applications on Android
The launching time of applications is measured by instrumenting
the Android application framework. We choose the “startActiv-
ity” function of Activity Class as the start time point and the
“handleResumeActivity” function of ActivityThread Class as the
end time point. However, some applications show a splash screen
first and call back the “onResume” function of Activity Class
prematurely. For example, the game application update scene
rendered far behind the activity resumed. We further instrument
the InputDispatcher Class to trace the time point where the
application is able to interact with the user.

2014. Fig. 1 shows the CDF of application usage durations.
Over 60% application interactions last from several seconds
to tens of seconds. And about 85% of the interactions last
less than 5 minutes. Some similar results have been reported
in [3]. The results support the view that the durations of
mobile interactions are inherently short and applications are
frequently relaunched. In addition, we have observed that
users tend to use multiple applications simultaneously. This
is usually due to the usage patterns of smartphones. Users
tend to take out of their smartphones, use them for a while
and then put them back.

We choose various popular applications on Android
market to quantify the issue of application launching. Fig. 2
shows the launching time of these applications. The launch-
ing time is measured as the timespan from the time point
when a user taps on the shortcut icon of an application to
the point the user is able to interact with the application.
Half of these applications take more than 5 seconds. Only
one of them takes less than 2 seconds before the interaction
is available. The results suggest that the launch really takes
time and hurts the application experiences.

In order to take a closer look at the work done during
the application startup, we use Android dmtracedump and
traceview tool to help profiling the launching process of
an application. Taking the game application of PvZ 2 as
an example, Fig. 3 is a screenshot of its traceview. Some
representative function calls are marked for clarification.
Each parallel timeline represents a thread. For this game
application, most work is done by the “GL Thread”. There
is a lot of initial work using OpenGL library for graphic
rendering. Other work like network and I/O is mixed up
with the initial process. The traditional network and I/O
prefetching schemes [4], [5] cannot solve this issue because
most of them overlap with graphic rendering. This shows

AndroidSurfaceView.Na1ve_onDrawFrame	 EGLImpl.eglSwapBuffers	

Posix.readBytes	
ForwardingOs.fstat	

Na1vecrypto.SSL_read	

Hashmap.put	

Posix.socket	

GL	 Thread	
main	

HKp	 ConnPool	
FinalizerDaemon	

RefQueueDaemon	
Watchdog	

Thread-‐400	
Thread-‐376	
Thread-‐386	

Thread-‐377	
Thread-‐370	
Thread-‐379	
Thread-‐394	

Pool-‐3-‐thread-‐1	

0	 s	 1	 s	 2	 s	 3	 s	 4	 s	 5	 s	 6	 s	 7	 s	 8	 s	 9	 s	 10	 s	

Fig. 3. Game application PvZ 2 startup profiling with Android traceview
Android traceview is a graphical viewer for application profiling
by Android dmtracedump. There is a timeline on the top of the
panel. Each thread’s execution is shown in its own row, with
time increasing to the right. Each method is shown in a different
color (colors are reused in a round-robin fashion starting with the
methods that have the most inclusive time). Some key methods are
marked.

that the application start procedure is in fact intrinsic and
hard to avoid during startup from scratch.

2.2 Limitations of Current Solutions

The current design of mobile systems makes it difficult
to reduce time of launching or relaunching from scratch.
Taking Android as an example, we can see the details
in application life cycle as well as memory management.
The operating system rather than the developers manages
the life cycle of an application. This means that when the
foreground application is switched to the background, the
application will either be killed or cached based on the
current utilization ratio of memory. Android employs a low
memory killer for immediately reclaiming memory held by
background applications. The low memory killer chooses
an application to kill based on the badness value of the
process. The badness value is a numeric score calculated by
Linux out of memory (OOM) killer, which judges whether a
process should be chosen as the candidate for termination.
To restore to the exact previous state of a relaunching
application after being killed, Android provides APIs for
developers to save and restore state information on the
system. The assumptions here are: 1) developers should
know exactly how to use the system APIs to save state
information; 2) it is feasible and efficient to export the
state information into data input format as required by
these APIs. However, for some applications like games, it is
uneasy to restore the previous same state because the APIs
(only support bundle objects) are limited and the state to be
saved might be huge. This difficulty becomes worse with
the increasing complexity of mobile applications. It does
bring some burden to application developers who have to
carefully consider what kind of state should to be saved.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2428692, IEEE Transactions on Computers

IEEE TRANSACTIONS, SEPTEMBER 2014 4

In addition, relaunching application takes the same long
time as launching the application from scratch and perhaps
longer due to the included restoring work.

Caching background applications in memory for fast
application relaunching is a conventional solution in mobile
operating systems. This conventional caching approach is
limited by the available memory of smartphones. Some
applications holding large amount of memory may be killed
immediately after caching in background. Thus caching
background application to boost application launching has
limited effects.

There have emerged some application launching predic-
tion based pre-launching solutions to this issue. A repre-
sentative one is FALCON [1], which is a novel solution to
improve user experience during the application launching
on Windows Phone (WP). The basic idea of FALCON is
to predict the timing of using an application. Thus, it can
pre-launch the predicted application before the user starts
it manually. Through this way, the perceived launching
time could be reduced. The prediction is based on context
signals and access patterns. As such sets of preloaded pre-
diction rules are diverse for different users, FALCON trains
individual context triggers to improve accuracy. FALCON
takes both the expected latency benefit and energy cost into
account so as to reduce the possibility of unexpected side
effects. With FALCON, the limitation of available memory
does not matter if the prediction is accurate. However,
bootstrapping FALCON to achieve a precision of 80% needs
over 8 months training according to its evaluation. Fur-
thermore, the predictability of application launching varies
for different users. These factors limit the effectiveness of
FALCON greatly.

Our solution extends the state caching mechanism by
using page swapping. Thus, the method is not based on
any imprecise information such as prediction. Using page
swapping, we extend virtual memory to hold much more
background applications, i.e., applications do not need to
be killed immediately. Therefore, the performance of page
swapping is the key to the practicability of this solution. In
the next subsection, we will discuss the technical challenges
on this issue.

2.3 Technical challenges

To enable page swapping on Android for fast application
relaunching is challenging in two aspects, i.e., compatibility
and performance.

For the compatibility issue, page swapping in fact con-
flicts with Android runtime. Android applications are run-
ning on Android runtime (Dalvik before Android 4.4 or
experimental ART on Android 4.4). Android runtime em-
ploys a radical GC. It may be triggered not only when
allocating new objects on heap but also when the application
is in the background. Page swapping is especially disastrous
with Android runtime. A full runtime GC cycle will not be
performed until the runtime has run out of allowed heap.
However, at that time, garbage objects likely occupy most of
the heap. Since the garbage objects are usually not touched
until runtime GC is started, those objects should be more
likely to be swapped out if page swapping is enabled. When
runtime GC finally runs, there would be a ridiculous swap

storm, pulling in all these objects only to discover that they
are indeed garbage and should be discarded. This shows
why page swapping conflicts with runtime GC. As the
application life cycle is controlled by the operating system,
a low memory killer is more efficient than page swapping
in reclaiming memory. In addition, the extra flash writes
in page swapping reduce flash storage and battery life. So
the original Linux page swapping is turned off on Android.
To enable page swapping, we must retrofit it to adapt to
Android runtime.

For the performance issue, the swap-in performance
of the conventional Linux page swapping on Android is
unacceptable for fast application relaunching. This is due to
the characteristic of eMMC (Embedded Multi Media Card)
on smartphones, the slow small scattered reads as well as
the interference of reads and writes.

• Slow small scattered reads: Due to the unrevealed inter-
nal design, a small scattered read is up to ten times
slower than a sequential read on eMMC (about 60
MB/s for 4 KB sized sequential read and 6 MB/s
for 4 KB sized scattered read as shown in Table 1).
However, Linux page swapping does not guaran-
tee that the pages to swap in are adjacent when
applications are relaunched on Android. In Linux
page swapping, the swap area (a swap partition or
a swap file) is divided into a number of page-sized
slots. Each slot is called a “page slot” or “swap
slot”. Even though the Linux page swapping tries to
allocate page slots in cluster (a number of continuous
page slots), it becomes difficult when swap partition
becomes messy. In addition, Linux page swapping
uses an approximate Least Recently Used (LRU)
algorithm to choose memory pages to swap out. The
successive pages to swap out are not always from the
same background application.

• Read/Write Interference: 1) Concurrent reads and
writes may degrade each other’s performance as
mingled reads and writes would interrupt the inter-
nal pipelining of the flash storage. However, swap-
in and swap-out often happens at the same time in
Linux page swapping. Relaunching usually requires
swap-in operations and the performance cannot be
guaranteed under such circumstance. 2) Potential
garbage collection of flash storage (flash GC) will
generate extra reads and writes, which also brings
the interference.

To address these compatibility and performance issues,
we have designed and implemented MARS to replace Linux
page swapping on Android in order to improve the perfor-
mance of application relaunching.

3 DESIGN AND IMPLEMENTATION

3.1 MARS Overview
MARS is a retrofitted Linux page swapping compatible
to Android system. The design goal of MARS is to gain
swap-in speedup for faster application relaunching. The
architecture of MARS is shown in Fig. 4. There are two main
components in MARS: page slot allocation and read/write
control. The former aims to reduce scattered reads, while

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2428692, IEEE Transactions on Computers

IEEE TRANSACTIONS, SEPTEMBER 2014 5

Foreground)
Applica0ons)

Background)
Applica0ons)

Long5lived)
Services)

Page)Slots)
Alloca0on)

Swap Partition

Pages)
App A

App B

R/W)
Control)

Adaptive
Watermark

Legend
GC running
GC frozen

Kswapd)

trimming

Fig. 4. The architecture of MARS
The isolation of runtime GC and page swapping falls into two
parts. One is no GC for background applications, and the other
is no page swapping for foreground applications and long-lived
services. The page slot allocation tries to generate sequential
reads upon swap-ins. The read/write control aims to eliminate
the interference of flash reads and writes during page swapping.

the later reduces the interference of flash reads and writes.
As the low-end NAND flash storage on smartphones is the
target of speeding up swap-in, the main efforts fall into the
following aspects:

• Modification on Android runtime. 1) As we have
illustrated that Linux page swapping conflicts with
runtime GC, we first disable the “idle runtime GC”
of background applications to mitigate this issue. 2)
And then the application launching events are col-
lected as the hint information to guide the read/write
control component. 3) Since page swapping is em-
ployed for reclaiming memory in MARS, low mem-
ory killer is disabled.

• Modification of Linux page swapping: As conven-
tional page swapping is not optimized for smart-
phones, we modify several aspects of Linux page
swapping. The first is to make the foreground ap-
plications and long-lived services bypass the page
swapping to avoid potential conflicts with runtime
GC. We also reorganize and manage the swap parti-
tion to utilize the characteristics of eMMC on smart-
phones. An adaptive free memory watermark is
added to help control the page swapping behaviors.
The writeback mechanism of page cache is also mod-
ified slightly for reducing flash writes during the
application relaunching. Finally, we use background
trimming method to reduce the extra reads and
writes of flash GC.

3.2 Retrofitting for Compatibility
To resolve the conflicts between Linux page swapping and
Android runtime GC, we isolate them rather than make
them collaborate with each other. This is due to the design
requirements of Android runtime GC. Android runtime GC
runs more frequently than Java runtime in order to keep
memory footprint small. So we try to make the runtime
GC stay simple and fast instead of adding complexity and
delay. To isolate Linux page swapping and Android runtime
GC, MARS needs to retrofit both Linux page swapping and
Android runtime framework.

For background applications, MARS modifies the An-
droid runtime GC behavior to be compatible with page

swapping. A full runtime GC on Android usually takes sev-
eral hundreds of milliseconds. It is a long time that greatly
degrades the runtime performance. After Android 2.3, only
partial runtime GCs are performed when the application is
running. Android runtime shrinks the heap size by doing
explicit full runtime GCs periodically when the application
is idle, i.e., the application is running in the background. In
MARS, the idle runtime GC is frozen until the application
comes back to the foreground. Thus, runtime GC will never
confuse page swapping.

For foreground applications and long-lived services run-
ning on Android runtime framework, MARS filters the
memory pages of these processes to isolate Linux page
swapping from Android runtime GC. Linux page swapping
employs a page replacement algorithm like 2Q [6], an im-
plementation of LRU (Least Recently Used) approximation.
This algorithm maintains two queues of memory pages —
the active list and the inactive list. For each page, there are
two flag bits — “PG active” and “PG referenced”. When
a page is visited, set its “PG referenced” flag bit. If its
“PG referenced” flag bit has been set, it means that this
page is referenced frequently. If this page is on the inactive
list, it should be moved to the active list. “PG referenced”
flag bit will be cleared if the page has not been visited after
a period of time. Pages on the active list will be moved
out to the inactive list if their “PG referenced” flag bit
has been cleared for a long time. Only the pages in the
inactive list are the candidates for page swapping. MARS
modifies the “page referenced” function to always set the
“PG reference” flag bit of the pages for foreground applica-
tions and long-lived services. For other processes not run-
ning on Android runtime framework, they do not conflict
with page swapping. So MARS just takes these processes
the same as those of background Android applications.

In addition, background applications may be killed by
low memory killer on Android for reclaiming memory. We
disable the low memory killer as it is unnecessary and
incompatible in MARS.

3.3 Page Slot Allocation

The main drawback of eMMC on smartphones is its poor
scattered I/O performance. Previous researchers [7] have
reported the poor scattered write performance of SD cards,
another kind of low-end NAND flash on smartphones.
As MARS focuses on speeding up swap-in, we measured
the read bandwidth of the eMMC on a Google Nexus 4
phone using IOZone, a well-known I/O benchmark tool for
measuring the performance of storage devices or systems.
The results shown in Table 1 indicate that the scattered read
operation is up to ten times slower than the sequential read
operation on the eMMC of Google Nexus 4 phone.

TABLE 1
Read Bandwidth of Google Nexus 4 eMMC

Record Size Sequential (KB/s) Scattered (KB/s)
4 KB 63071 6839
16 KB 61105 11676
64 KB 64619 18658
256 KB 61648 29330
1 MB 63957 55352

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2428692, IEEE Transactions on Computers

IEEE TRANSACTIONS, SEPTEMBER 2014 6

MARS
Swap Partition

Application Extent

Pages

App A

App B
Page Slots
Allocation

HASH MAP
……

Hash(pid) -> Extend #
……

Conventional Linux
Page Swapping
Swap Partition

Messy when
most of page
slots are in use

Fig. 5. Page slot allocation
The size of an application extent is 1 MB. One application may
have more than one application extents. But there is only one
application extent that is currently serving the swap-outs for an
application in the hash map. The application extent should be
removed from the hash map when all the page slots have been
allocated and a new free application extent should be added in the
hash map.

As shown in Table 1, the difference between sequential
and scattered read becomes negligible as the record size
increases. This makes an insight for speeding up swap-
in. The method is to organize pages of an application in
a sequential LBA (Logic Block Address) sequence in swap
area and make them swap in together.

Linux page swapping already tries to cluster swap pages
by allocating them sequentially in swap partition. However,
this cannot guarantee that the read operations are sequential
while doing swap-in considering how the original Linux
page swap allocates a page slot. The procedures of allocating
a page slot are listed below.
1) If there is any free page slot from the current cluster of

continuous free page slots, the page slot will be allocated.
2) Try to find a new cluster meeting the requirements if the

current cluster has no free page slots, and then allocate a
new page slot from the new cluster.

3) Otherwise simply allocate a free page slot.
This scheme is in fact a straightforward way to generate

sequential swap-in reads based on information of reference
locality. But it does not fit MARS for the following reasons.
1) The allocation method cannot allocate sequential page

slots when lots of page slots are in use. This is not the case
for traditional servers as swap area is only used when
working set is larger than the main memory. Considering
performance, server applications rarely use swap area.
However, in the context of MARS, we want most of the
swap area is in use as we intend to hold background
applications as many as possible.

2) We have shown that users intend to use multiple appli-
cations simultaneously. This will reduce the locality of
memory reference.
The page slot allocation scheme of MARS is shown in

Fig. 5 and 6. MARS reorganizes the page slots in the swap
area into application extents. An application extent is an
aligned cluster of continuous page slots. The default size of
an application extent is 1 MB. To swap out a page, MARS
finds the process that the page belongs to and allocates a

Algorithm:PageSlotAllocation

Input: page to swap out, flags to set in swap map
Output: the allocated page slot number offset

1: offset← 0
2: key ← get process id(page)
3: possible extents← extents hash[key]
4: for extent ∈ possible extents do
5: if extent.key = key then
6: if extent.free pages = 0 then
7: hash del(extent)
8: list add tail(used extents, extent)
9: if list empty(free extents) then

10: break
11: end if
12: extent← free extents.next
13: extent.key ← key
14: list del(free extents, extent)
15: hash add(extents hash, extent)
16: end if
17: offset← get cur page(extent)
18: swap map[offset]← flags
19: break
20: end if
21: end for

Fig. 6. Page slot allocation algorithm
The swap map is used to record the state of each page slot, such
as used, scanning or discarding. If this algorithm finds out an
available page slot, it returns the index of the page slot, “offset”,
which is a positive integer. It returns 0 if there is no free page
slots. The function “get process id” returns the ID of the process
which the page belongs to. The function “get cur page” returns
the first unallocated page slot sequentially and maintains the free
page counts of the application extent. In our implementation, the
hash map has 1024 buckets by default and stores all the entries
that hash to the same bucket in an array. The algorithm used here
has a constant complexity and brings neglected overhead. Thus,
the performance is close to the original page slot allocation.

page slot from the corresponding application extent. If there
is no free page slot in the application extent, MARS adds a
new application extent for that process. By using different
extents for different applications, when an application is
switched to the foreground, the extent for the corresponding
application will be loaded into the memory. Thus, MARS
forces the swap-in read operations to be sequential.

The mappings of applications and application extents are
recorded in a key-value table as shown in Fig. 5. The key is
a hashed process ID of an application and the value is the
pointer to the current extent of corresponding application.
Page slot allocation is also responsible for reclaiming the
application extents that has no valid page slots. These in-
valid application extents will be trimmed (further illustrated
in Section 3.4) and then placed in a free extent list for the
upcoming application extent allocations.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2428692, IEEE Transactions on Computers

IEEE TRANSACTIONS, SEPTEMBER 2014 7

Low Watermark

High Watermark

Wake up

Go to sleep

Reserved memory for
application launching

Kswapd

Free Memory Size
When
launching Δ

Fig. 7. Adaptive free memory watermark
The reserved memory will complement the free memory pages for
swap-in. This part of memory will never be used when there is no
application launching. The reserved memory size ∆ is determined
by the maximum value of all the background applications’ working
set size.

3.4 Read/Write Control

Previous researchers [8], [9], [10] pointed out that concurrent
reads and writes interfere with each other in flash mem-
ory based Solid State Drives (SSD) and cause performance
degradation severely. This issue is also serious in eMMC.
The main reason is that mingling reads and writes would
interrupt the internal pipelining of a flash memory plane in
the flash storage.

We measure the I/O performance of concurrent 64 KB
reads and writes on the eMMC of Google Nexus 4 to verify
the phenomenon of flash storage. The results shown in Table
2 reveal that the interference of concurrent reads and writes
on the eMMC interrupt each other and greatly degrade
the I/O performance. However, swap-in and swap-out are
often triggered simultaneously in Linux page swapping. A
common case is to swap out pages to make room for some
pages to swap in. As discussed before, this will greatly
reduce the performance.

TABLE 2
Concurrent Reads and Writes Bandwidth (in KB/s) of

Google Nexus 4 eMMC

Seq. Write Scat. Write None
Seq. Read 34071+14153* 37084+3866* 64619
Scat. Read 11624+4420* 4503+4359* 18658

None 16386 5758

Note: “Seq.” is sequential and “Scat.” is scattered.
* The numerical value on the left side of “+”

denotes read bandwidth, and the numerical
value on the right side of “+” denotes write
bandwidth.

MARS decouples swap-out and swap-in by using a
novel swapping control mechanism. As shown in Fig. 7,
MARS controls the kswapd, kernel swap daemon in Linux,
with adaptive free memory watermarks — low watermark
and high watermark. In Linux kernel, the watermarks are
determined by the min free kbytes m, which is the pool
size of reserved page frames in kernel. (Low watermark is
5/4 ·m and high watermark is 3/2 ·m by default). When the
free memory is lower than the low watermark, the kswapd
threads will be waked up to reclaim memory. The duty of
kswapd is to keep the free memory higher than the high
watermark. The kswapd also tries to reclaim memory peri-
odically. In MARS, when there is no application launching,
the low and high watermarks are increased by an variation

MARS

Linux Page Swapping
Legend	

	 Read Write

ΔLow Watermark: 5/4 m + -> 5/4 m 	
	 High Watermark: 3/2 m + -> 3/2 m Δ

0 s 2 s 4 s 6 s

Fig. 8. I/O trace when application relaunching
For MARS, the two watermarks are reduced ∆ when the applica-
tion PvZ 2 is relaunching. As the original page swapping the two
watermarks are fixed, this small change makes a big difference of
the I/O pattern of page swapping. There are two phases of page
swapping caused by application relaunching in MARS. One is
the swap-in phase during application relaunching, and the other
is the swap-out phase afterwards. The swap-in and swap-out is
performed simultaneously in the original page swapping.

∆, which is the maximum value of the total swap-in size
of all the background applications. ∆ is usually less than
100 MB which should not induce performance degradation
for a smartphone with 2 GB RAM. The total swap-in size
of a background application is actually its swap-out size. In
such a way, MARS reserves enough free memory for any
background application relaunching. During application re-
launching, the low and high watermarks are reset as the
original value. Thus, the kswapd should not be triggered to
swap out upon swap-in. In addition, we also modify pdflush
threads, the page cache synchronization daemons in kernel,
to turn off the writeback of dirty pages during application
launching.

Taking the application PvZ 2 relaunching as an example,
the interleaving of swap-in and swap-out when application
relaunching is different under MARS and the conventional
Linux page swapping. We employ Android systrace tool 3 to
record the I/O activities of the eMMC on the phone when
the application PvZ 2 is relaunching. The interleaving of
reads and writes is shown in Fig. 8.

During application relaunching, MARS sets the
low/high watermark to the original ones. The reserved
memory pages for application launching are then used
for swap-in. The relaunching time of MARS is about 1.6
seconds. The recorded I/O activities in 2 to 4 seconds of
the timeline in MARS are I/O operations generated by
the application. For the conventional Linux page swapping,
frequent I/O interleaving reduces the performance of swap-
in greatly.

We modify the Android application framework to notify
the Linux kernel at each time point of application launching.
The application launching state is indicated by Android
runtime through the Linux proc filesystem.

Besides the interference of reads and writes generated in
software level, the flash GC may also induce internal reads

3. The Systrace tool combines data from the Android kernel such as
the CPU scheduler, disk activity, and application threads to generate
an HTML report that shows an overall picture of an Android devices
system processes for a given period of time.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2428692, IEEE Transactions on Computers

IEEE TRANSACTIONS, SEPTEMBER 2014 8

and writes that will interrupt the normal I/O operations.
The flash GC is caused by the characteristic of flash storage.
Flash storage cannot update data in place. Instead, they
must first erase a large flash block4, and then write to pages
within the erased block. The old flash pages are no longer
needed (also called stale pages). Before erasing a flash block,
the valid flash pages (not stale) should be copied to another
flash block and remapped by Flash Translate layer (FTL).
This is why the process of flash GC involves reading and
rewriting data internally.

In MARS, we employ the discard 5 command to inform
the FTL about which flash pages should be invalid. As the
discard command itself costs the bandwidth of the eMMC,
this command should not be issued at any time. MARS
issues discard commands in the background when no page
swapping is performed currently. The discard requests of
adjacent LBAs are merged to make a batch operation.

A simple and low overhead scheme for discarding the
invalid flash pages is to discard the invalid application ex-
tents, called “trim”. As this task should be done periodically,
we assign it to the kswapd service. When kswapd has no page
swapping tasks, it will execute the function of discarding
the invalid application extents before going to sleep.

3.5 Implementation
We built our prototype system MARS on Android 4.4 with
the kernel version of ARM Linux 3.4. There are about 200
LOCs (Lines Of Codes) coding efforts within the Linux
kernel and about 40 LOCs of modifications on Android
runtime and application framework. The implementation of
MARS entails three main parts: retrofitting for compatibility,
page slot allocation and read/write control. It is recom-
mendable to Android community for its portability and ease
of maintenance.

The implementation of disabling background runtime
GC and low memory killer are located in the Android
application framework module and the lowmemorykiller ker-
nel module. The application launching state is traced in
Android application framework. And the kernel is notified
through the proc file system. Besides the writes of swap-out,
the page cache sync writes of pdflush threads should be
blocked during application launching. The default size of
the hash table we choose is 1024 with considering both the
lookup efficiency and memory overhead.

4 EVALUATION

We evaluate the performance of MARS against the original
Linux page swapping and the current solution on Android.
The evaluation aims to answer the following three key
questions:

• What is the improvement from each component of
MARS for swap-in performance compared to the
conventional Linux page swapping?

• Does MARS architecture design improve relaunching
performance among a variety of mobile applications?

4. A flash block is composed of a number of flash pages
5. Discard is a sub-operation defined in eMMC 4.5 Standard [11]. It

allows an operating system to inform the FTL which blocks of data are
no longer considered in use and can be wiped internally.

• Is MARS an effective solution to speed up mobile
application relaunching for daily use?

The experimental setup and methodology are described
in Section 4.1. Then we present our evaluation to answer the
three questions in Sections 4.2, 4.3, 4.4 respectively.

4.1 Methodology

Devices and System Settings. All the evaluations are
performed on a Google Nexus 4 phone equipped with
Qualcomm SnapdragonTMS4 Pro CPU, 2 GB RAM, and 16
GB eMMC internal storage. Linux kernel is compiled with
the option “CONFIG BLK DEV IO TRACE” enabled for
tracing block level I/O. We use a 2 GB swap file as the swap
area. The swappiness value is set to 60 by default. Swappiness
[12] is a parameter that controls the relative weight given to
swap out runtime memory, as opposed to dropping pages
from the system page cache. It can be set to values between
0 and 100 inclusively. A low value causes the kernel to avoid
swapping, and a higher value causes the kernel to use swap
space. The page cluster is set to 3 by default, which means
that 8 (23) pages will be paged in together [12]. The settings
of two parameters settings can impact the page swapping
behaviors. The runtime is set to default on Android 4.4,
Dalvik virtual machine, in all our evaluations.

Benchmarks. The micro-benchmarks test the I/O latency
and bandwidth in page swapping for evaluating the ef-
fectiveness of each MARS component. These two micro-
benchmarks are measured by blktrace [13] tools. The trace
data are collected in memory to minimize the interference
caused by tracing itself. Then the collected trace is processed
with blkparse [13] and btt [13]. The application benchmark
is the relaunching time of applications for evaluating the
performance of MARS. The relaunching time is measured by
instrumenting Android runtime framework. The timespan
of an application relaunching is from the time point when
the application icon is tapped to the time point when the
user is able to interact with the application. To evaluate the
effectiveness of MARS for daily use, we replay the collected
application usage traces on the test smartphone under base-
line, the conventional Linux page swapping and MARS.
Then we collect all the application relaunching times. The
applications involved in all the evaluations are picked from
the most popular ones of various categories on Android
market. The picked applications are listed as follows.

• Social: Facebook, LinkedIn, Google+, Twitter, Insta-
gram, Pinterest, Fancy, Banjo, and Beautylish.

• Game: Fruit Ninja, PvZ 2, Temple Run 2, Angry
Birds, Blitz, and Aces.

• Utility: Hotel Tonight, Expedia, The Weather Chan-
nel, ES File Explorer, and Google Maps.

• Productivity: Evernote, Gmail, QuickOffice, and
Google Drive.

• Communication: Skype, Hangouts, Facebook Mes-
senger, and Snapchat.

For all our experiments, we report results averaged over
five different runs. All the evaluations are performed on the
phone with good Wi-Fi connection.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2428692, IEEE Transactions on Computers

IEEE TRANSACTIONS, SEPTEMBER 2014 9

4.2 Micro-Benchmarks

Micro-benchmarks are used to test the effectiveness of the
two components in MARS. One is the page slot allocation
and the other is the read/write control. The former is
designed for generating more sequential reads to increase
read bandwidth of eMMC during page swapping. We can
observe the effectiveness brought by page slot allocation by
measuring the occupied bandwidth (throughput) of swap-
in. The read/write control of MARS aims at reducing the
interference of concurrent reads and writes for good swap-
in performance. The latency of read or write operations can
reflect the interference of parallel I/O sequences. Without
the interrupts of concurrent writes, the latency of read
operations should be kept low.

We instrumented the Linux kernel to trace the swap-
in/swap-out records. Each record entry contains: times-
tamp, action (swap-in or swap-out), page slot number and
the corresponding process name. We implemented a swap-
in/swap-out trace replayer that can simulate the original
Linux page swapping and MARS on the test smartphone.
We first traced the swap-in/swap-out on the smartphone
under normal usage. Then we replayed the same trace
with the original Linux page swapping, MARS without
read/write control, and MARS with read/write control. The
latency and occupied bandwidth under different page slot
allocation schemes and read/write control strategy were
measured by blktrace tools.

The results of occupied bandwidths of swap-in are
shown in Fig. 9. For the Linux page swapping, the read
bandwidth of swap-in is about 6.94 MB/s. This is due to the
slow small-scattered read operations and the interference
of concurrent write operations. With added component of
page slot allocation (MARS without read/write control), the
swap-in throughput of MARS is 18.76 MB/s. This indicates
that the page slot allocation scheme of MARS is much
better than the Linux page swapping for improving swap-in
performance. Enhanced with read/write control, the swap-
in throughput of MARS is increased to 26.48 MB/s. This
demonstrates that read/write control can reduce the aver-
age latency of read operations.

Fig. 10 shows the results of block I/O traces. The read
latency of eMMC varies from less than 1 millisecond to more
than one hundred milliseconds. For Linux page swapping,
the average read latency is about 3.1 milliseconds, and
ranges from 0.3 milliseconds to 131 milliseconds. This is
due to the read/write interference we illustrate in Section
3. For MARS without read/write control, the situation of
interference is similar to the Linux page swapping. The read
latency ranges from 0.3 milliseconds to 125 milliseconds,
and the average is 2.9 milliseconds. MARS with read/write
control shows its effectiveness by reducing 1 millisecond
read latency. The average is about 1.9 milliseconds. More
importantly, it reduces the variation of read latency. The
maximum read latency is reduced to 10.6 milliseconds.

In summary, the design of MARS architecture achieves
our initial goals. The two components of MARS, page
slot allocation and read/write control, have tackled the
technical challenges demonstrated in Section 2. They are
specially designed for application relaunching and compar-
atively different from the conventional Linux page swap-

0	

5	

10	

15	

20	

25	

30

Linux Page Swapping MARS w/o RW Control MARS w/ RW Control

Ba
nd

w
id
th
	(M

B/
s)
	

Fig. 9. The read bandwidth when page swapping
The read occupied bandwidth is obtained by the statistical process-
ing of “blkparse” and “btt” with the I/O operations collected by
“blktrace”. It reflects the throughput of swap-in. For eliminating
the noise of “blktrace” itself, the trace data are kept in memory
without writing to the persistent storage.

 0.1

 1

 10

 100

 1000

Linux Page Swapping

MARS w/o RW Contorl

MARS w/ RW Control

L
a
te

n
c
y
 (

m
s
)

3.132297 2.921503 1.934600

Fig. 10. The read latency when page swapping
The read latency is given by the “blkparse” with parsing the block
I/O traces.

ping. The page slot allocation of MARS improves the read
performance on eMMC. The read/write control reduces the
interference of write operations involved in the swap-in
procedure. They both can speed up the swap-in greatly.

4.3 Application Benchmark

In this subsection, we evaluate the performance of MARS
among a variety of applications on Android. The appli-
cations are the most popular application listed in Section
4.1. We measure the relaunching time of these applications
under MARS and the Linux page swapping. The launching
time of application starting from scratch is measured as the
baseline. For MARS and the Linux page swapping, the sys-
tem status is kept nearly the same when relaunching occurs.
There are about 75% page slots are in use. The amount of
memory pages of the application that have been paged out
varies from 20 MB to more than 60 MB. Fig. 11 shows the
relaunching time clustered histogram of the applications we

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2428692, IEEE Transactions on Computers

IEEE TRANSACTIONS, SEPTEMBER 2014 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

Time (Seconds)

Baseline
Linux Page Swapping

MARS

Fig. 12. CDF of applications relaunching time

measured. Fig. 12 shows the relaunching time CDF of all the
applications on the most popular application list.

As shown in Fig. 11 and 12, MARS speeds up the ap-
plication relaunching time by 2 to 4 times. The relaunching
time under MARS is less than 2 seconds over 80% applica-
tions on the list. The application relaunching under Linux
page swapping is slower than that under MARS without
exception. Some of the results are even worse than the
baseline. For those applications with launching time larger
than 10 seconds, the advantage of MARS is obvious. Overall,
MARS outperforms the Linux page swapping and improves
the application relaunching on smartphones.

4.4 MARS Effectiveness for Daily Use
In this subsection, we evaluate the effectiveness of MARS
for daily use. A large scale of Android application usage
data collected by Yahoo [14] shows that a typical Android
device has an average of 95 applications installed, and 35
of them are actually used each day. The data shows that
Android users interact with applications for an average of
100 times a day and that up to 6 applications an hour are
accessed at peak hours usually in the late afternoon. We
wonder whether MARS can be always effective to reduce
the application launching time in such a situation. We also
deploy a two-month application usage trace on Android
phones of 12 volunteer (mentioned in Section 2). We choose
a one-day trace of a representative individual from the
collected traces and replay the interactions manually on the
test smartphone with no page swapping, the conventional
Linux page swapping, and MARS. The interactions happen
in two time periods, 8:00 to 10:00 AM and 8:00 to 10:00 PM.
The other interactions are used for warming up the test
smartphone to the preposition for testing. The launching
times are collected the same as the application benchmark.
Fig. 13 shows the stacked histogram of each test case.

As shown in Fig. 13, the effectiveness of MARS is dif-
ferent. From 8:00 to 10:00 AM, there are only 7 interac-
tions and 3 used applications. And the second interaction
dominates the results shown in Fig. 13(a). It is a weather
application which is usually used in morning according to
this individual’s convention. The effectiveness of MARS is
significant from 8:00 to 10:00 PM. There are 21 interactions

0	

1	

2	

3	

4	

5	

6	

7

Baseline Linux Page Swapping MARS

La
un

ch
in
g	
Ti
m
e	
(s
)	

(a) 8:00 ∼10:00 AM

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50

Baseline Linux Page Swapping MARS

La
un

ch
in
g	
Ti
m
e	
(s
)	

(b) 8:00 ∼10:00 PM

Fig. 13. Effectiveness for daily use
In this stacked histogram, each block in each column represents the
launching time of an application interaction. For this individual
we chose, the smartphone is used more heavily at night than in the
morning. In the 8:00 ∼ 10:00 AM, there is only one application
relaunching speeded up by MARS. The effectiveness of MARS is
obviously in the 8:00 ∼ 10:00 PM.

and 8 used applications. As shown in Fig. 13(b), MARS
reduces about 50% of the launching time. The effectiveness
of MARS depends on the usage of each individual. MARS is
effective for the individuals who use smartphone a lot. For
the ones who rarely interact with mobile applications, the
effectiveness of MARS would be visible after a long period
of time.

4.5 Overhead

The overhead of MARS mainly includes extra storage capac-
ity used, flash storage wearing out, and power consump-
tion. As the flash storage capacity on smartphones becomes
more and more plenty, e.g., 8 or 16 GB eMMC on Google
Nexus 4, the extra storage capacity cost of MARS, and 1 or
2 GB for swap partition is acceptable. In this subsection, we
focus on the additional flash storage wear rate and power
consumption of MARS.

Obviously, the additional flash writes are produced by
page swapping in MARS. The number of swapped pages
is determined by the interleaving and working set of ap-
plications, i.e., relaunching an application from background

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2428692, IEEE Transactions on Computers

IEEE TRANSACTIONS, SEPTEMBER 2014 11

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	
20	

Bli
tz	

Cla
sh
	of
	Cl
an
s	

Fru
it	N

inj
a	

Pv
Z	2
	

An
gry
	Bi
rd
s	

Te
mp
le	
Ru
n	2
	
Ac
es
	

Lin
ke
dIn
	

Fa
ce
bo
ok
	

Go
og
le+
	

Tw
iMe
r	

Pin
ter
es
t	

Ins
tag
ram

	

Sk
yp
e	

Me
ssa
ge
r	

Ha
ng
ou
ts	

Sn
ap
ch
at	

Ho
tel
	To
nig
ht	

Gm
ail
	

Ex
pe
dia
	

Fa
nc
y	

Ev
ern
ote
	
Dr
ive
	

ES
	

Qu
ick
offi
ce
	

Be
au
tyl
ish
	
TW
C	

Ba
njo
	

Ca
nd
y	C
ras
h	

La
un

ch
in
g	
Ti
m
e	
(s
)	 Baseline	

Linux	Page	Swapping	

MARS	

Fig. 11. Relaunching time under Linux page swapping and MARS
The relaunching time can be measured in the same way as the launching time. The baseline is the launching time of applications on
Android without MARS.

0	

20	

40	

60	

80	

100	

120	

140	

Go
og
le+
	

Ins
tag
ram

	

Ha
ng
ou
ts	

Me
ssa
ge
r	

Gm
ail
	

Dr
ive
	

Fa
nc
y	

Pv
Z	2
	

Fru
it N

inj
a	

M
em

or
y	
U
se
d	
(M

B)
	

Fig. 14. Some Android applications memory usage
The memory used of applications are the PSS (Proportion Set Size)
of calculated by Android ‘procrank’ tool, which can be seen as the
applications’ working set size.

when parts of its memory pages are swapped out and
allocating memory for a running process when there is
no enough free pages held. However, not each application
interleaving causes the additional flash writes. For the eval-
uation of daily use in Subsection 4.4, there are 1 of 7 and 7 of
21 application relaunchings cause additional flash writes for
8:00 to 10:00 AM and 8:00 to 10:00 PM respectively in one
day. The working set of applications on smartphone varies
from about 10 MB (e.g., messaging application) to over 100
MB (e.g., game applications). Fig. 14 shows the working set
of some Android applications measured on the test phone
in our evaluation.

The write endurance of Multi-Level Cell (MLC) NAND
flash is usually 3000 to 10000 write/erase cycles [15]. For
eMMC on Google Nexus 4 [16], [17], its MLC NAND Flash
is approximately 10,000 write/erase cycles. According to a
block I/O trace of daily used Android devices [18], there is
about 1,837 MB data written for a period of 24 hours. On the
wearing overhead of MARS, considering the worst case in
our daily usage evaluation, there are about 10,000 MB (100
times of application interleaving a day [14] and swapping
100 MB data for each application) data written for page

swapping in one day. Even in such a case, equipped with
the wear leveling techniques, the write endurance of MLC
NAND flash would enable the applications read and write
data for more than tens of years on smartphones like our test
phone, Google Nexus 4. Thus, the write endurance overhead
of MARS is acceptable.

The additional flash writes induced by MARS cost ad-
ditional power simultaneously. According to the power
consumption measurement of read/write operations in a
smartphone [19] and our validation with PowerTutor [20],
Android requires 70 to 3,300 µJ/KB to complete the I/O
operations, including sequential/scattered reads or writes.
The main parts of power consumption are CPU and DRAM
energy cost instead of the eMMC device in the whole I/O
stack. Sequential operations are more energy-efficient than
the scattered ones. For the case in our daily usage evaluation
(about 20% application interleaving caused page swapping,
i.e., 2,000 MB data read and written for page swapping
in one day), the daily energy overhead of MARS mainly
contains two parts: the read energy cost of swap-in, and the
write energy cost of swap-out.

Taken 70 µJ/KB for the read energy cost and 360 µJ/KB
for the write energy cost, the daily energy overhead of
MARS is 880.64 J, which is about 3.07 % of our test phone’s
battery power. Our test phone embeds a 3.8 V, 2100 mAh
battery [21]. It means that MARS induces about 3% energy
overhead in the daily use of smartphones like Google Nexus
4. This is not a significant amount for the whole energy cost
in daily usage.

As discussed above, MARS does introduce potential
extra costs on smartphones including more storage capacity,
flash storage wearing out and power consumption. We think
that as the current flash storage spaces are relative large and
becoming even larger. The extra storage needed for page
swapping is small and should not be an issue. The reads
and writes during page swapping degrade the life of flash
storage. However, with the improvement of flash controller
techniques like wear leveling and NAND flash upgrade, the
lifetime of flash far exceeds the service life of a smartphone.
It is tolerable to have these additional write operations
introduced by MARS. Based on an analysis [22] of power
consumption in a smartphone, the main part of energy cost

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2428692, IEEE Transactions on Computers

IEEE TRANSACTIONS, SEPTEMBER 2014 12

on smartphones is LCD screen display. Flash read/write
operations cost only a small portion of battery power. In
addition, MARS can speedup the application relaunching
which can save the energy with reduced consumption of
LCD screen display. Thus, we believe that the energy cost of
MARS is negligible.

5 RELATED WORK

There are various work related to MARS design and im-
plementation. They can be categorized into similar work on
desktop PC, mobile application launching prediction, vir-
tual memory GC improvement as well as the performance
of NAND flash based storage optimization.

Studies for fast application launching with system op-
timizations on desktop PC are distinguished to various
circumstances and requirements [5], [23], [24]. A represen-
tative one is SuperFetch [24], an extension of Windows
Vista. It continually analyzes application behavior and us-
age patterns and attempts to load commonly used libraries
and application components into memory before they are
required. As the memory size of smartphones is usually
limited, SuperFetch does not suit for smartphones. Address-
ing the inefficiency of the HDD-aware application launchers
on SSDs, Joo et al. [5] proposed an SSD-aware application
prefetching scheme, which tries to overlap the computation
time with the SSD access time during application launching.
By contrast, MARS caches the applications to skip the com-
putation of initial process and focuses on speeding up page
swap-in on low-end NAND flash storage.

Mobile users intend to install more and more applica-
tions on their smartphones with the increasing numbers of
available mobile applications. A bunch of application launch
prediction approaches [1], [25], [26], [27] have been pro-
posed. The prediction results can be used for pre-launching
applications to reduce the perceived launching time. FAL-
CON [1] predicts the timing of application launching using
user context such as locations and temporal access patterns.
FALCON also considers both cost and benefit to choose the
most appropriate prediction. On the contrary, APPM [27]
only uses historical application usages in prediction without
any power-hungry or privacy-sensitive contexts. We believe
that the prediction precision and/or long-term training re-
quirements limit the effectiveness of such prediction based
approaches. Thus, MARS does not rely on any imprecise
information.

The poor interaction of garbage-collected applications
with virtual memory systems has been studied in [28] and
[29]. BC [28] cooperates with the virtual memory manager
to perform in-memory full-heap collections using summary
information (“bookmarks”) recorded from evicted pages. To
address the swap thrashing when Java virtual machines
(JVMs) cannot adapt their application heap sizes to fit in
RAM, CRAMM [29] dynamically adjusts heap sizes to max-
imize throughput while minimizing page swapping. Such
approaches do not fit for smartphones, and can degrade ap-
plication responsiveness seriously. The heap size of Android
runtime is only tens of MBs. There is no need to swap pages
for applications running in foreground. In MARS, we isolate
the runtime GC and page swapping, i.e., no page swapping

for long-lived services or foreground applications, and no
runtime GC for background applications.

The design of MARS has embraced past work on in-
vestigating the use of NAND flash storage for virtual
memory and page cache in Linux. FlashVM [30] is a core
virtual memory subsystem built in the Linux kernel that
uses dedicated flash for paging. Similar to MARS, FlashVM
also employs the discard command to reduce the extra
internal writes on flash devices. The design of background
flash trimming in MARS draws on the usage of discard
command in FlashVM. SpatialClock [31] is a buffer cache
replacement algorithm designed for mobile devices. It ad-
dresses the well-known low write-throughput problem for
small, scattered writes on micro SD cards and transfers
scattered writes to sequential ones. SpatialClock produces
sequential writes to improve the performance of buffer
cache replacement. By contrast, MARS generates sequential
reads to speed up swap-in. Some other flash-aware cache
replacement schemes have been proposed. FOR [32] focuses
on the asymmetric read and write operation time of flash
storage, calculates the Inter Operation Distance (IOD) [33]
and recency values of read and write operations separately
to get the replacement weight of each page. BPLRU [34]
enhances the random write performance of flash storage by
improving write buffer management with block-level LRU
scheme and page padding technique in the FTL. CFLRU
[35] tries to evict a clean page rather than a dirty page for
reducing costly writes. The replacement scheme in MARS
is still 2Q [6] LRU. Taking replacement cost into account
should be a complementally future work.

6 CONCLUSION

This paper presents the design, implementation, and eval-
uation of MARS, a retrofitted Linux page swapping for
fast application relaunching on smartphones. MARS tackles
the conflicts between the Linux page swapping and An-
droid runtime GC. To speed up swap-in upon application
relaunching, MARS adapts the Linux page swapping for
the performance characteristics of low-end flash storage on
smartphones. Addressing the issue of slow small-scattered
reads, MARS reorganizes the swap area and employs a
new page slot allocation scheme for generating sequential
reads. Addressing the issue of read/write interference, we
have developed the read/write control component for re-
ducing the concurrent writes upon swap-in. Compared to
the conventional Linux page swapping, the component of
page allocation can scale up the read bandwidth to about
2.7 times. In addition, read/write control can bring another
improvement and scale up the read bandwidth to 3.8 times.

We have demonstrated that using page swapping to ex-
tend the conventional caching scheme for fast application re-
launching is practicable in smartphones. Micro-benchmarks
have verified that both components of MARS achieve the
initial design goals. Evaluation results show that MARS
reduces the launching time of Android applications by 50%
to 80%.

ACKNOWLEDGMENTS

This Work is supported by Natural Science Foundation of
China (61433008, 61373145, 61170210, U1435216), National

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2428692, IEEE Transactions on Computers

IEEE TRANSACTIONS, SEPTEMBER 2014 13

High-Tech R&D (863) Program of China (2012AA012600),
Chinese Special Project of Science and Technology
(2013zx01039-002-002). This work is partially supported
by Australian Research Council (ARC) Discovery Project
DP130104587 and Australian Research Council (ARC) Fu-
ture Fellowships Project FT12010083.

REFERENCES

[1] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu, “Fast app
launching for mobile devices using predictive user context,”
in Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’12. New
York, NY, USA: ACM, 2012, pp. 113–126. [Online]. Available:
http://doi.acm.org/10.1145/2307636.2307648

[2] J. Nielsen, “Powers of 10: Time scales in user expe-
rience,” Available online http://www.nngroup.com/articles/
powers-of-10-time-scales-in-ux accessed 22.11.2013, 2009.

[3] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum,
“LiveLab: Measuring wireless networks and smartphone users
in the field,” SIGMETRICS Perform. Eval. Rev., vol. 38, no. 3,
pp. 15–20, Jan. 2011. [Online]. Available: http://doi.acm.org/10.
1145/1925019.1925023

[4] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and
D. Watson, “Informed mobile prefetching,” in Proceedings of the
10th International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’12. New York, NY, USA: ACM, 2012,
pp. 155–168. [Online]. Available: http://doi.acm.org/10.1145/
2307636.2307651

[5] Y. Joo, J. Ryu, S. Park, and K. G. Shin, “FAST: Quick application
launch on solid-state drives,” in Proceedings of the 9th USENIX
Conference on File and Stroage Technologies, ser. FAST’11. Berkeley,
CA, USA: USENIX Association, 2011, pp. 19–19. [Online].
Available: http://dl.acm.org/citation.cfm?id=1960475.1960494

[6] T. Johnson and D. Shasha, “2Q: A low overhead high
performance buffer management replacement algorithm,” in
Proceedings of the 20th International Conference on Very Large
Data Bases, ser. VLDB ’94. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1994, pp. 439–450. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645920.672996

[7] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage
for smartphones,” in Proceedings of the 10th USENIX Conference
on File and Storage Technologies, ser. FAST’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 17–17. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2208461.2208478

[8] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting
internal parallelism of flash memory based solid state drives
in high-speed data processing,” in Proceedings of the 2011
IEEE 17th International Symposium on High Performance Computer
Architecture, ser. HPCA ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 266–277. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2014698.2014864

[9] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy, “Design tradeoffs for ssd performance,” in
USENIX 2008 Annual Technical Conference on Annual Technical
Conference, ser. ATC’08. Berkeley, CA, USA: USENIX Association,
2008, pp. 57–70. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1404014.1404019

[10] C. Dirik and B. Jacob, “The performance of pc solid-state
disks (ssds) as a function of bandwidth, concurrency, device
architecture, and system organization,” in Proceedings of the 36th
Annual International Symposium on Computer Architecture, ser. ISCA
’09. New York, NY, USA: ACM, 2009, pp. 279–289. [Online].
Available: http://doi.acm.org/10.1145/1555754.1555790

[11] V. Tsai, “emmc v4.41 and v4.5 architec-
ture for high speed functions and features,”
http://www.jedec.org/sites/default/files/Victor Tsai.pdf09.12.2014.

[12] D. Bovet and M. Cesati, Understanding The Linux Kernel. Oreilly
& Associates Inc, 2005.

[13] “Blktrace,” Available online http://linux.die.net/man/8/blktrace
accessed 12.09.2014, 2014.

[14] Yahoo, “How android users interact with their phones?”
http://yahooaviate.tumblr.com/image/9579583893309.12.2014.

[15] “Flash memory write endurance,” Available online
http://en.wikipedia.org/wiki/Flash memory#Write endurance
accessed 22.10.2014, 2014.

[16] “Toshiba mlc nand,” Available online http://toshiba.
semicon-storage.com/ap-en/product/memory/nand-flash/
mlc-nand.html accessed 22.10.2014, 2014.

[17] DSstar, “Toshiba releases research on mlc nand flash memory,”
Available online http://www.taborcommunications.com/dsstar/
04/0518/108104.html accessed 26.10.2014, 2014.

[18] K. Lee and Y. Won, “Smart layers and dumb result: Io
characterization of an android-based smartphone,” in Proceedings
of the Tenth ACM International Conference on Embedded Software,
ser. EMSOFT ’12. New York, NY, USA: ACM, 2012, pp. 23–32.
[Online]. Available: http://doi.acm.org/10.1145/2380356.2380367

[19] J. Li, A. Badam, R. Chandra, S. Swanson, B. Worthington,
and Q. Zhang, “On the energy overhead of mobile storage
systems,” in Proceedings of the 12th USENIX Conference on File
and Storage Technologies, ser. FAST’14. Berkeley, CA, USA:
USENIX Association, 2014, pp. 105–118. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2591305.2591316

[20] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in
Proceedings of the Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, ser. CODES/ISSS
’10. New York, NY, USA: ACM, 2010, pp. 105–114. [Online].
Available: http://doi.acm.org/10.1145/1878961.1878982

[21] “Nexus 4 teardown,” Available online https://www.ifixit.com/
Teardown/Nexus+4+Teardown/11781 accessed 22.10.2014, 2014.

[22] A. Carroll and G. Heiser, “An analysis of power consumption
in a smartphone,” in Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference, ser. USENIXATC’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 21–21.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855840.
1855861

[23] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and K. Grimsrud,
“Intel turbo memory: Nonvolatile disk caches in the storage
hierarchy of mainstream computer systems,” Trans. Storage,
vol. 4, no. 2, pp. 4:1–4:24, May 2008. [Online]. Available:
http://doi.acm.org/10.1145/1367829.1367830

[24] MICROSOFT, “Windows PC Accelerators,” Available online http:
//www.microsoft.com/whdc/system/sysperf/perfaccel.mspx
accessed 05.12.2013, 2008.

[25] C. Shin, J. Hong, and A. K. Dey, “Understanding and prediction
of mobile application usage for smart phones,” in Proceedings of
the 2012 ACM Conference on Ubiquitous Computing, ser. UbiComp
’12. New York, NY, USA: ACM, 2012, pp. 173–182. [Online].
Available: http://doi.acm.org/10.1145/2370216.2370243

[26] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, and G. Bauer,
“Falling asleep with angry birds, facebook and kindle: A large
scale study on mobile application usage,” in Proceedings of
the 13th International Conference on Human Computer Interaction
with Mobile Devices and Services, ser. MobileHCI ’11. New
York, NY, USA: ACM, 2011, pp. 47–56. [Online]. Available:
http://doi.acm.org/10.1145/2037373.2037383

[27] A. Parate, M. Böhmer, D. Chu, D. Ganesan, and B. M. Marlin,
“Practical prediction and prefetch for faster access to applications
on mobile phones,” in Proceedings of the 2013 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, ser.
UbiComp ’13. New York, NY, USA: ACM, 2013, pp. 275–284.
[Online]. Available: http://doi.acm.org/10.1145/2493432.2493490

[28] M. Hertz, Y. Feng, and E. D. Berger, “Garbage collection without
paging,” in Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’05.
New York, NY, USA: ACM, 2005, pp. 143–153. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065028

[29] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss, “Cramm:
Virtual memory support for garbage-collected applications,”
in Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, ser. OSDI ’06. Berkeley, CA, USA:
USENIX Association, 2006, pp. 103–116. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1298455.1298466

[30] M. Saxena and M. M. Swift, “Flashvm: Virtual
memory management on flash,” in Proceedings of the
2010 USENIX Conference on USENIX Annual Technical
Conference, ser. USENIXATC’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 14–14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855840.1855854

[31] H. Kim, M. Ryu, and U. Ramachandran, “What is a good buffer
cache replacement scheme for mobile flash storage?” in Proceedings

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TC.2015.2428692, IEEE Transactions on Computers

IEEE TRANSACTIONS, SEPTEMBER 2014 14

of the 12th ACM SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’12. New York, NY, USA: ACM, 2012, pp. 235–246.
[Online]. Available: http://doi.acm.org/10.1145/2254756.2254786

[32] Y. Lv, B. Cui, B. He, and X. Chen, “Operation-aware buffer
management in flash-based systems,” in Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’11. New York, NY, USA: ACM, 2011, pp. 13–24.
[Online]. Available: http://doi.acm.org/10.1145/1989323.1989326

[33] S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache
performance,” in Proceedings of the 2002 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, ser. SIGMETRICS ’02. New York, NY, USA: ACM,
2002, pp. 31–42. [Online]. Available: http://doi.acm.org/10.1145/
511334.511340

[34] H. Kim and S. Ahn, “BPLRU: A buffer management scheme
for improving random writes in flash storage,” in Proceedings of
the 6th USENIX Conference on File and Storage Technologies, ser.
FAST’08. Berkeley, CA, USA: USENIX Association, 2008, pp.
16:1–16:14. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1364813.1364829

[35] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee, “CFLRU:
A replacement algorithm for flash memory,” in Proceedings
of the 2006 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, ser. CASES ’06. New
York, NY, USA: ACM, 2006, pp. 234–241. [Online]. Available:
http://doi.acm.org/10.1145/1176760.1176789

Weichao Guo received the BE degree from
Harbin Institute of Technology, China, in 2011.
He is a Ph.D candidate with Department of Com-
puter Science and Technology, Tsinghua Univer-
sity, Beijing, China. He is currently working on
flash array storage techniques towards enhanc-
ing reliability and performance. His research
interests include distributed systems, storage
techniques, mobile and operating systems.

Kang Chen received the Ph.D degree in com-
puter science and technology from Tsinghua
University, Beijing, China in 2004. Currently, he
is an Associate Professor of computer science
and technology at Tsinghua University. His re-
search interests include parallel computing, dis-
tributed processing, and cloud computing.

Huan Feng received the BE degree from Beijing
Jiaotong University, China in 2011. She is now
a Ph.D candidate in Department of Computer
Science and Technology at Tsinghua University
in China. She is currently working on mobile per-
formance optimization problems. Her research
interests include storage, mobile operating sys-
tem and mobile computing.

Yongwei Wu received the Ph.D degree in ap-
plied mathematics from the Chinese Academy of
Sciences in 2002. He is currently a professor in
computer science and technology at Tsinghua
University of China. His research interests in-
clude parallel and distributed processing, and
cloud storage. Dr. Wu has published over 80
research publications and has received two Best
Paper Awards. He is currently on the editorial
board of the International Journal of Networked
and Distributed Computing and Communication

of China Computer Federation. He is an IEEE member. He can be
reached at: wuyw@tsinghua.edu.cn.

Rui Zhang is an Associate Professor and
Reader in the Department of Computing and
Information Systems at the University of Mel-
bourne. He obtained his bachelor’s degree from
Tsinghua University in 2001 and his Ph.D from
National University of Singapore in 2006. Be-
fore joining the University of Melbourne, he has
been a visiting research scientist at AT&T labs-
research in New Jersey and at Microsoft Re-
search in Redmond, Washington. Since January
2007, he has been a faculty member in the De-

partment of Computing and Information Systems at the University of
Melbourne. Recently, he has been a visiting researcher at Microsoft
Research Asia in Beijing regularly collaborating on his Future Fellowship
project funded by Australian Research Council. His research interest is
data and information management in general, particularly in areas of
indexing techniques, moving object management, web services, data
streams and sequence databases.

Weimin Zheng received the BS and MS de-
grees, respectively, in 1970 and 1982 from Ts-
inghua University, China, where he is currently a
professor of Computer Science and Technology.
He is the research director of the Institute of
High Performance Computing at Tsinghua Uni-
versity, and the managing director of the Chinese
Computer Society. His research interests include
computer architecture, operating system, stor-
age networks, and distributed computing. He is
a member of the IEEE.

